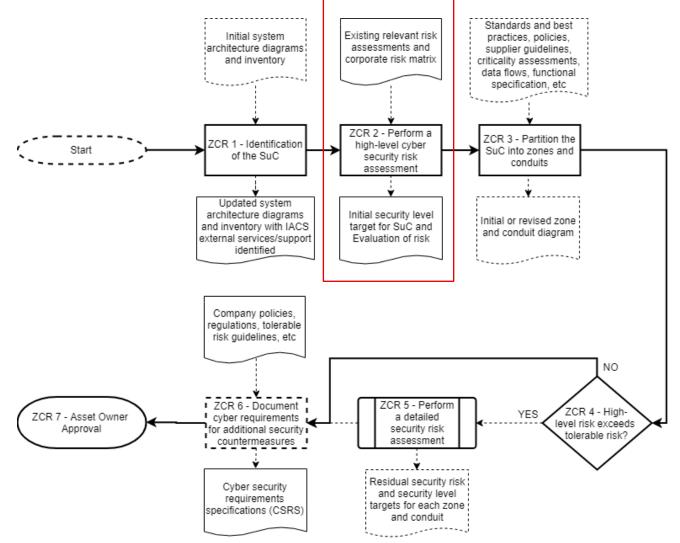
Verborgene Risiken:

Die Bedeutung von Bedrohungsanalysen in der OT-Sicherheit

NIS2

- Taking into account the state-of-the-art and, where applicable, relevant European and international standards, as well as the cost of implementation, the measures referred to in the first subparagraph shall ensure a level of security of network and information systems **appropriate to the risks posed**
 - Definition:
 - 'risk' means the potential for loss or disruption caused by an incident and is to be expressed as a combination of the magnitude of such loss or disruption and the likelihood of occurrence of the incident

Cyber Resilience Act


- Products shall be designed, developed and produced in such a way that they ensure an appropriate level of cybersecurity **based on the risks**;
- Definition:
 - 'cybersecurity risk' means the potential for loss or disruption caused by an incident and is to be expressed as a combination of the magnitude of such loss or disruption and the likelihood of occurrence of the incident;

IEC 62443-3-2 Introduction

- There is no simple recipe for how to secure an industrial automation and control system (IACS) and there is good reason for this. It is because security is a matter of risk management.
- Definition:
 - **expectation of loss** expressed as the **likelihood** that a particular threat will exploit a particular **vulnerability** with a particular **consequence**

Assessing Risk According To IEC 62443-3-2

ZCR – Zoning and Conduit Requirement

OVE IEC 62443 Cybersecurity Tagung 2024

Top 10 Industrial Security Threats 2022

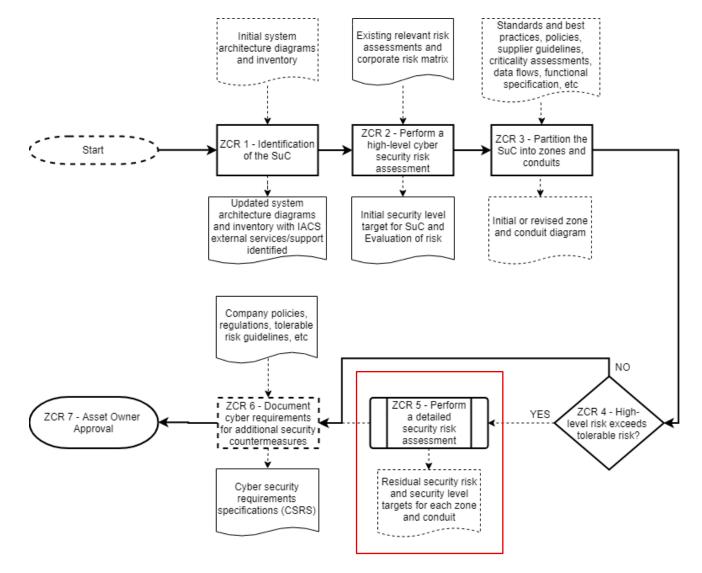
The Federal Office for Information Security in Germany compiles a list of the current threats with the highest criticality faced by OT.

- 1. Infiltration of Malware via Removable Media and External Hardware
- 2. Malware Infection via Internet and Intranet
- 3. Human Error and Sabotage
- 4. Compromising of Extranet and Cloud Components
- 5. Social Engineering and Phishing
- 6. (D)DoS Attacks
- 7. Internet-connected control components
- 8. Intrusion via remote maintenance access
- 9. Technical failure and Force Majeure
- 10. Soft- and hardware vulnerabilities in the supply chain

Source: https://www.allianz-fuer-cybersicherheit.de/SharedDocs/Downloads/Webs/ACS/DE/BSI-CS/BSI-CS_005E.pdf?__blob=publicationFile&v=6

Impacts

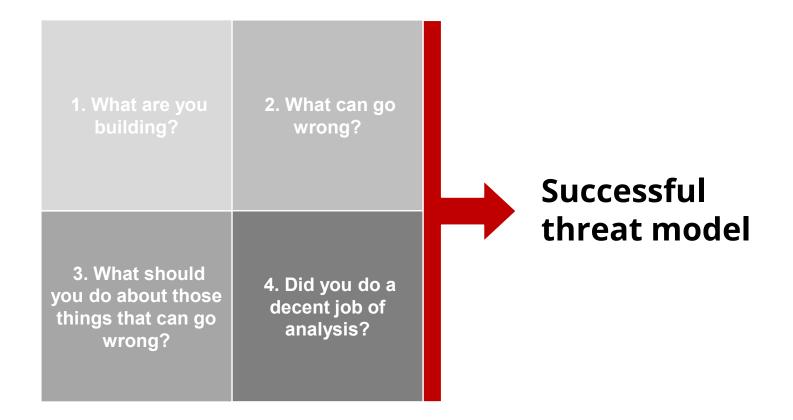
- What are the potential implications of asset compromise?
- How are these effects to be classified in terms of their criticality?


		Danger to life and limb	Availability	Confidentiality	Integrity	Physical damage	Violation of regulations and supply contracts
4	Disastrous	Deaths	10,0000 households can't be supplied with electricity for 2 days. (e.g. SCADA system is not switchable for 2 days)			- Damage to a generator	
3	Critical	severely injured			Write access to: - Historian data		 - 5% deviation from the specified guideline value over 2h
2	Moderate		1,000 households can only be supplied insufficiently with electricity (e.g. SCADA system cannot be switched for 1h)	Read access to: - Historian data		- Increased wear of the generator blades	
1	Negligible						 1% deviation from the specified guideline value over 2h

OVE IEC 62443 Cybersecurity Tagung 2024

Zoning Process According To IEC 62443-3-2

ZCR – Zoning and Conduit Requirement

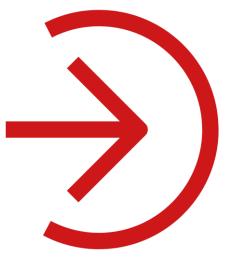


OVE IEC 62443 Cybersecurity Tagung 2024

Components Of A Threat Modeling Process

• You begin threat modeling by focusing on four key questions:

IEC 62443-4-1 Threat Model Requirements


"Ensure that all products shall have a threat model specific to the current development scope of the product with the following characteristics." – 6.3.1 SR-2 Threat model requirements

- Correct flow of categorized information throughout the system;
- Trust boundaries;
- Processes;
- Data stores;
- Interacting external entities;
- Internal and external communication protocols implemented in the product;
- Externally accessible physical ports including debug ports;
- Circuit board connections such as JTAG connections or debug

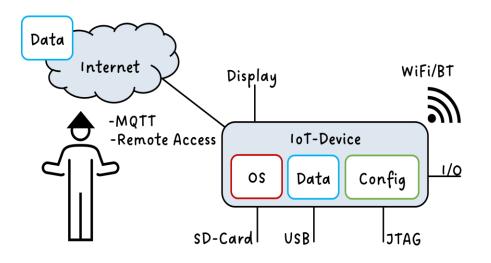
- Headers which might be used to attack the hardware;
- Potential attack vectors including attacks on the hardware, if applicable;
- Potential threats and their severity as defined by a vulnerability scoring system
- Mitigations and/or dispositions for each threat;
- Security-related issues identified; and
- External dependencies in the form of drivers or thirdparty applications that are linked into the application.

The Limes Security Way to do a Threat & Risk Assessment

Assumptions (i.e. Security Context)

Define the System under Consideration (SUC) and document applicable assumptions

- Finding answers to questions such as:
 - What is the intended use of the product?
 - Who are the users/operators of the product?
 - What does the operational environment look like?
 - What potential mitigating measures already exist?
 - What could be reasonably asked from customers to provide?
 - What is the foreseeable product life expectancy?
 - Can the physical/logical access be restricted?


- ...

Interfaces & Assets

Document all interfaces and assets of the system, to get an idea, where attacks are possible and what the goals could be.

- Interfaces (e.g. TCP ports, USB, JTAG, SWD, I/Os...)
 - What are attacks possible through?
 - What protocols are used?
 - Where is a trust boundary crossed?
 - What data is transferred?
- Assets (e.g. passwords, logic, data,...)
 - What are the possible targets of an attack?
 - What is worth protecting?
 - What is essential for functionality?

Impacts

- What are the potential implications of asset compromise?
- How are these effects to be classified in terms of their criticality?

		Danger to life and limb	Availability	Confidentiality	Integrity	Physical damage	Violation of regulations and supply contracts
4	Disastrous	Deaths	10,0000 households can't be supplied with electricity for 2 days. (e.g. SCADA system is not switchable for 2 days)			- Damage to a generator	
3	Critical	severely injured			Write access to: - Historian data		- 5% deviation from the specified guideline value over 2h
2	Moderate		1,000 households can only be supplied insufficiently with electricity (e.g. SCADA system cannot be switched for 1h)	Read access to: - Historian data		- Increased wear of the generator blades	
1	Negligible						 1% deviation from the specified guideline value over 2h

OVE IEC 62443 Cybersecurity Tagung 2024

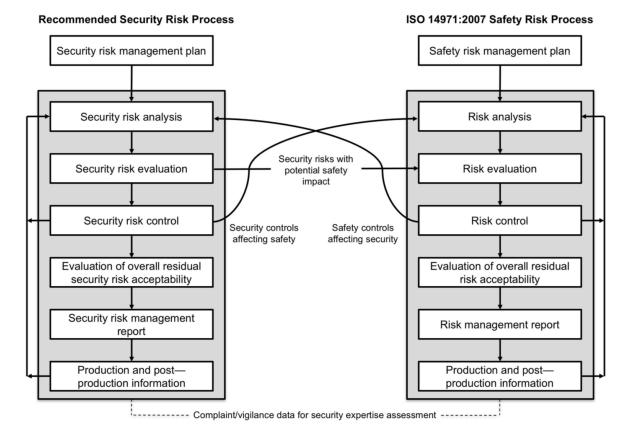
	the exploitability of the misused vulnerability										
		Exposure	Exploitability								
4	High	General: large group of people, Purdue Level: >= 4 Logical Access: Internet accessible, large Intranet Physical Access: public environment, can be acquired by security researchers		Easy	 basically no knowledge necessary (e.g. usage of default password) normal usage of the system IEC 62443 SL1 attacker 						
3	Medium- High	General: limited, but still large group, Purdue Level: 3, 3.5 Logical Access: extranet, medium intranet Physical Access: visitor areas with limited surveillance like conference room	3	Mediocre	 can be accomplished with available tools requires basic IT or domain knowledge (e.g. brute forcing of weak passwords) exploiting known vulnerabilities of unpatched systems IEC 62443 SL2 attacker 						
2	Medium- Low	General: smaller limited group, loosely controlled, Purdue Level: 1 & 2 Logical Access: Accessible from fieldbus Physical Access: placed in areas with controlled access that is limited to the necessary people and only permanently guarded visitor access	2	Difficult	 requires development or strong adaption of tools requires high IT or domain knowledge (e.g. compiling of own tools) IEC 62443 SL3 attacker 						
1	Low	General: very limited, well controlled group of users, Purdue Level: 0 Logical Access: Only accessible by very limited group of people via additional access control, e.g. VPN into DMZ Physical Access: secured cabinets with strongly limited access	1	Extremely Difficult	 requires exceptional technical expertise internal knowledge that is only available to a few persons (e.g. requires reverse engineering of a protected binary) IEC 62443 SL4 attacker 						

The probability of a threat occurring is made up of:

- the exposure of the affected component
- the exploitability of the misused vulnerability

Probability

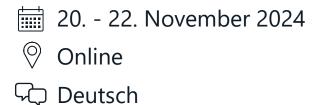
Threats



	ID	Who?	Does what?	Affected interface		Impact	Impact Rating	Exposure Description	Exposure Rating	Exploitability Description	Expl. Rating	Likelihood Rating	Risk Rating	Countermeasure-Ideas
1	L.	Attacker		SSH Remote	that leads to	write access to the historian	3	Accessible from the Intranet	4	Linux commands can be used on the system to change the data. Structure of the data must be understood to make meaningful manipulations.	2	3	3	- MFA - Password Policies - Restriction User Permissions
Ž	2	Attacker	is able to install a manipulated firmware image, disabling safety checks	USB-Interface PLC	that leads to	manipulations of configuration data and set-points, resulting in damages to the machine	4	Accessible at machine	2	Knowledge required regarding firmware structure, reverse engineering, internal knowledge on how to manipulate set- points	1	1	2	- Secure Boot (verify authenticity and integrity of firmware image when booting) - Secure Update (install only signed firmware images)

Safety & Security: Risk Management

 There can be positive and negative side effects in both directions!


AAMI TIR57:2016

LIMES SECURITY

SICHERE PRODUKTENTWICKLUNG FÜR OT UND (I)IOT

Produkte konform zu Cyber Resilience Act, Maschinenverordnung, IEC 62443-4-1 und Co. entwickeln

Überblick zu Security Normen und Regularien gewinnen

Rahmenbedingungen für sichere Produktentwicklung schaffen

Security in den Produktentwicklungsprozess integrieren

JETZT ANMELDEN

Viel Erfolg bei der Umsetzung!

Peter Panholzer +43 664 1631139 ppa@limessecurity.com

www.limessecurity.com